Conference presentations by Vasilis Petropoulos (ESR5)

Our MUSIQ ESR5, Vasilis Petropoulos recently presented his research at international conferences. His research focuses in Ultrafast coherent spectroscopy of natural light-harvesting systems.

From 29 November – 2 December  21, Vasilis traveled to the Materials Research Society (MRS) Fall Meeting 2021 in Boston, MA, USA to present on “ PBI-Based Biomimetic Complex for Efficient Light-Conversion Unveiled via Ultrafast Spectroscopy.”

14–18 March 2022 he virtually presented at the American Physical Society (APS) March Meeting 2022 in Chicago, Illinois, USA. His presentation title was “Perylene-based Self-Assembly of Chloroplast-like Lamellae for Artificial Photosynthesis.”

New Publication: Ultrafast Multidimensional Spectroscopy with Field Resolution and Noncollinear Geometry at Mid-Infrared Frequencies.

In the beginning of this year, the MUSIQ project members from the University of Luxembourg presented a novel setup for multidimensional coherent spectroscopy with noncollinear geometry and complete field resolution in the THz range, which covers the characteristic fingerprint region of biomolecules. Thomas Deckert, MUSIQ ESR11, and PI Daniele Brida, among others, show that the setup is capable to detect signals down to a few tens of V cm-1 entirely background free and benchmark the setup with measurements on a low-bandgap semiconductor, paving the way towards the investigation of functional thin film materials, few-layer samples, and other specimen to study their coherent responses. The article has been published in New Journal of Physics and is openly accessible to all.

Read the full article here.


Energetic correlations and their dynamics govern the fundamental properties of condensed matter materials. Ultrafast multidimensional spectroscopy in the mid infrared is an advanced technique to study such coherent low-energy dynamics. The intrinsic many-body phenomena in functional solid-state materials, in particular few-layer samples, remain widely unexplored to this date, because complex and weak sample responses demand versatile and sensitive detection. Here, we present a novel setup for ultrafast multidimensional spectroscopy with noncollinear geometry and complete field resolution in the 15–40 THz range. Electric fields up to few-100 kV cm−1 drive coherent dynamics in a perturbative regime, and an advanced modulation scheme allows to detect nonlinear signals down to a few tens of V cm−1 entirely background-free with high sensitivity and full control over the geometric phase-matching conditions. Our system aims at the investigation of correlations and many-body interactions in condensed matter systems at low energy. Benchmark measurements on bulk indium antimonide reveal a strong six-wave mixing signal and map ultra-fast changes of the band structure with access to amplitude and phase information. Our results pave the way towards the investigation of functional thin film materials and few-layer samples.

Open PhD Position at UKON – apply now

The Chemistry Department of the University of Konstanz is currently offering a PhD position as an Early Stage Researcher within the MUSIQ project. The successful candidates will be expected to conduct research under the guidance of Prof. Dr. Andreas Zumbusch at the University of Konstanz with the aim of obtaining a PhD in Physics or Chemistry. The position will allow the student to participate in an exciting program comprising international schools, workshops, and secondments at academic as well as industrial partners.

To enhance the career perspective of the ESRs who will be choosen by training them in a broad range of cutting-edge scientific, technical and transferable skills, through a unique combination of projects and tailored courses.

Interested? Find out more via the detailed job profile and apply today.

MUSIQ Innovation Newsletter n. 3 | October 2021

The new MUSIQ Innovation newsletter on RAMAN SPECTROSCOPY: From applications to laser sources and detectors is available online and as a PDF . Each newsletter is written by three of MUSIQ’s Early Stage Researchers (ESRs) who choose their topics themselves to develop into an interesting read for our stakeholders. Our Innovation Newsletter n. 3 was written collaboratively by Jan Majer (ESR13), Dominykas Gudavičius (ESR15) and Ediz Herkert (ESR8).

Section n. 1
Prospects of stimulated Raman scattering in pharma research

Before a novel medicine can be introduced on the market, it needs to undergo a drug development process which today on average consists of six stages. The drug development process from target discovery to the launch can  take up to 15 years. Read more

Section n. 2
Light sources for CARS microscopy

In coherent anti-Stokes Raman scattering (CARS) microscopy two laser beams are used to produce radiation at a third wavelength when energy difference between pulses matches vibrational energy of a sample. For this vibrationally specific microscopy method it is critical to have a reliable wavelength-tunable light source to address different Raman bands. Optical parametric amplifiers (OPAs) and oscillators (OPOs) are well suited for this task. Read more

Section n. 3
EMCCD and sCMOS cameras for scientific imaging
A comparison of the key figures of current camera models

The emergence of faster and more sensitive scientific cameras allows to acquire images with unprecedented sensitivity and speed. This is particularly important for applications in life sciences where techniques like Raman imaging require low-noise detectors while other techniques like fluorescent correlation spectroscopy rely on frame rates in the upper kilohertz range. To obtain meaningful data it is therefore essential to choose the scientific camera according to the experimental conditions.  Read more

Thomas Deckert (ESR11) presents at the CLEO/Europe 2021

From 21 – 25 June 2021 the bi annual Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC) took place online at the World of Photonics Congress 2021 The CLEO/Europe-EQEC brings together universities, industry scientists and researchers to discuss basic research in laser physics, nonlinear optics and quantum optics. Thomas Deckert, our MUSIQ ESR11, represented the project by presenting his results on Ultrafast Coherent Spectroscopy with Field Resolution at Mid-Infrared and THz Frequencies.

MUSIQ Innovation Newsletter n. 2 | March 2021

Our second MUSIQ Innovation Newsletter on ULTRAFAST SPECTROSCOPY: RECENT PROGRESS AND CHALLENGES is available online as a PDF . We would like to thank Vasilis Petropoulos (ESR5), Vikramdeep Singh (ESR2) and Frank Quintela (ESR12) who delivered us this exciting read.

Section n. 1
Broadband laser sources for ultrafast spectroscopy

The continuous progress in laser technology along with technical advances and conceptual breakthroughs, expand the application potential of Ultrafast Spectroscopy. Read more

Section n. 2
Pulse shaping techniques for ultrafast spectroscopy

This section focuses on programmable femtosecond pulse-shaping techniques for multidimensional ultrafast spectroscopy. Read more

Section n. 3
Resources for improving data acquisit/newsletter/ion and coherence characterization in ultrafast spectroscopy

This section focuses on: 1. eliminating heat-induced signals by controlling pulse spectra through pulse shaping, 2. compressive sensing to shorten the data acquisition time, and 3. simultaneous frequency and time resolution using time-frequency transforms.  Read more

MUSIQ Innovation Newsletter n. 1 | October 2020<

We are happy to present to you our first MUSIQ Innovation Newsletter written by three of our Early Stage Researchers, Andrea Pruccoli (ESR10), Eric Michele Fantuzzi (ESR7) and Thomas Deckert (ESR11) on LASER SOURCES FOR MULTIPHOTON MICROSCOPY. The articles are also available for download as PDF.

Download as PDF

Section n. 1
Laser sources for Coherent Raman Scattering Microscopy

State of the art and new technologies – How to choose the best laser source for your SRS experiments

The laser source is arguably the core component in any CRS experiment. In this brief article we explain what the most common laser sources for CRS microscopy are and try to give guidelines for their selection. Read more

Section n. 2
Light sources for harmonic generation and multiphoton fluorescence microscopy

This section informs about the latest laser sources and their requirements for biophotonics applications. Specifically, the field of multiphoton microscopy (MPM) was subject to vast developments in recent years, pushed by the development of pulsed laser sources. This article will provide an overview of specific requirements of MPM experiments, and therein requirements for the laser sources themselves. Read more

MUSIQ E-Schools on Nano-Plasmonics and applications

The 2nd MUSIQ week was originally planned to be a face-to-face event in June 2020.  Due to the impact of the coronavirus pandemic, the school was organised online and held earlier to keep the ESRs engaged during the period where access to the various research labs was restricted. The 2nd School “Nano-Plasmonics and applications”  organised by our MUSIQ partner, ICFO, from 28th April – 7th May 2020 in six half day sessions and lecture topics related to the subject. 

  • Diffraction limited fluorescence microscopy and super-resolution approaches – Maria Garcia-Parajo (ICFO)
  • Introduction to nanoplasmonics – Niek van Hulst (ICFO)
  • Nanofabrication and integration approaches towards Neuroplasmonics – Francesco de Angelis (Istituto Italiano di Tecnologia)
  • Nanoplasmonics & single molecules using DNA origamis – Guillermo Acuña (Université de Fribourg)
  • Plasmonic based fluorescence enhancement & FRET manipulation – Jerome Wenger (Fresnel Institute)
  • Nanoplasmonics for ultra-sensitive detection & living cell applications – Maria Garcia-Parajo (ICFO)

The virtual training session was open to externals and attracted 50-60 additional participants from outside of the MUSIQ Network. We would like to thank Prof. Maria Garcia-Parajo  from ICFO for organising this event and for the active participation from everyone who joined.

Projects starts on 1st April 2019 – No Joke

The EU funded project MUSIQ will officially start on 1st April 2019 and aims to develope with the help of 15 early stage researchers (ESRs) the next generation optical microscopy exploitin quantum coherent nonlinear phenomena.

It trains the ESRs on a unique mixture of experimental and computational skills at the physics/chemistry/life science interface. By bringing together a unique team of 6 world-leading academic groups, at the forefront of nonlinear optical microscopy and ultrafast coherent light-matter interaction phenomena, and 6 high tech companies, to translate the results into biomedical/pharmaceutical real-world applications.

The project will run for 48 months under the coordination of Prof Paola Borri from the Cardiff University.