Innovation Newsletter

The MUSIQ network shares updates and highlights on the project’s progress, results and ESR’s activities, with a focus on the latest innovation related to multiphoton microscopy and bioimaging through dedicated online Innovation Newsletters.

MUSIQ Innovation Newsletter n. 2 | March 2021

Section n. 1
Broadband laser sources for ultrafast spectroscopy

The continuous progress in laser technology along with technical advances and conceptual breakthroughs, expand the application potential of Ultrafast Spectroscopy. Read more

Section n. 2
Pulse shaping techniques for ultrafast spectroscopy

This section focuses on programmable femtosecond pulse-shaping techniques for multidimensional ultrafast spectroscopy. Read more

Section n. 3
Resources for improving data acquisit/newsletter/ion and coherence characterization in ultrafast spectroscopy

This section focuses on: 1. eliminating heat-induced signals by controlling pulse spectra through pulse shaping, 2. compressive sensing to shorten the data acquisition time, and 3. simultaneous frequency and time resolution using time-frequency transforms.  Read more

MUSIQ Innovation Newsletter n. 1 | October 2020

Section n. 1
Laser sources for Coherent Raman Scattering Microscopy

State of the art and new technologies – How to choose the best laser source for your SRS experiments

The laser source is arguably the core component in any CRS experiment. In this brief article we explain what the most common laser sources for CRS microscopy are and try to give guidelines for their selection. Read more

Section n. 2
Light sources for harmonic generation and multiphoton fluorescence microscopy

This section informs about the latest laser sources and their requirements for biophotonics applications. Specifically, the field of multiphoton microscopy (MPM) was subject to vast developments in recent years, pushed by the development of pulsed laser sources. This article will provide an overview of specific requirements of MPM experiments, and therein requirements for the laser sources themselves. Read more