Thomas Deckert (ESR11) presents at the CLEO/Europe 2021

From 21 – 25 June 2021 the bi annual Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC) took place online at the World of Photonics Congress 2021 The CLEO/Europe-EQEC brings together universities, industry scientists and researchers to discuss basic research in laser physics, nonlinear optics and quantum optics. Thomas Deckert, our MUSIQ ESR11, represented the project by presenting his results on Ultrafast Coherent Spectroscopy with Field Resolution at Mid-Infrared and THz Frequencies.

MUSIQ Roadmap on bio-nano-photonics published

From June to September 2020 the ESRs organised a virtual Journal Club as part of the continuous training. Part of the regular Journal Club was to discuss relevant papers that they thought may potentially be used as references to develope and write a MUSIQ Roadmap. This is one of our dissemination activities, to produce a technology Roadmap about the challenges and future directions of optical microscopy exploiting quantum coherent nonlinear phenomena. Groups of ESRs presented papers during the Journal Club which were then discussed. The MUSIQ Roadmap has been published in the Journal of Optics which is openly accessible to all.

Read the full article online:


In the quest to decipher the chain of life from molecules to cells, the biological and biophysical questions being asked increasingly demand techniques that are capable of identifying specific biomolecules in their native environment, and can measure biomolecular interactions quantitatively, at the smallest possible scale in space and time, without perturbing the system under observation. The interaction of light with biomolecules offers a wealth of phenomena and tools that can be exploited to drive this progress. This Roadmap is written collectively by prominent researchers and encompasses selected aspects of bio-nano-photonics, spanning from the development of optical micro/nano-spectroscopy technologies for quantitative bioimaging and biosensing to the fundamental understanding of light–matter interaction phenomena with biomolecules at the nanoscale. It will be of interest to a wide cross-disciplinary audience in the physical sciences and life sciences.

Read the full article online: